
ARTICLE

Received 17 Dec 2015 | Accepted 12 Jul 2016 | Published 11 Oct 2016

Challenges and disparities in the application of
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To characterize the extent and impact of ancestry-related biases in precision genomic

medicine, we use 642 whole-genome sequences from the Consortium on Asthma among

African-ancestry Populations in the Americas (CAAPA) project to evaluate typical filters and

databases. We find significant correlations between estimated African ancestry proportions

and the number of variants per individual in all variant classification sets but one. The source

of these correlations is highlighted in more detail by looking at the interaction between

filtering criteria and the ClinVar and Human Gene Mutation databases. ClinVar’s correlation,

representing African ancestry-related bias, has changed over time amidst monthly updates,

with the most extreme switch happening between March and April of 2014 (r¼0.733 to

r¼ �0.683). We identify 68 SNPs as the major drivers of this change in correlation. As long

as ancestry-related bias when using these clinical databases is minimally recognized,

the genetics community will face challenges with implementation, interpretation and

cost-effectiveness when treating minority populations.
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T
he idiom ‘searching for a needle in a haystack’ is frequently
used in genomics, and is especially apt for describing the
search for causal alleles in patients with non-canonical

diseases of likely genetic origin. As a field, we tend to be singularly
focused on the needle and forget that the complexity of the
haystack is actually a highly rate-limiting step of this search. The
motivation of this project is to characterize the complex
interaction between variant prioritization and ancestry, often
believed to be largely affected by the predominance of European-
based data within clinical databases1–3, to better understand the
application of clinical genomics to minority populations. Any
ancestry-related biases that exist when using typical filters and
databases to implement variant prioritization and other similar
precision genomic medicine techniques can have profound
confounding effects, as most methodological biases do.
Therefore, here we quantify the extent of ancestry-related biases
inherent to approaches and databases typically used for precision
genomic medicine, and we present how such biases have changed
over time. We also show how these biases translate to the level of
the individual and their proportion of African ancestry, with
implications for diagnostic accuracy and cost.

To explore the role ancestry plays in variant prioritization
approaches often implemented in genomic medicine, we utilize
whole-genome sequencing data from 642 study individuals in the
Consortium on Asthma among African-ancestry Populations in
the Americas (CAAPA). The CAAPA project represents a diverse
group of admixed individuals of African descent with no
suspected Mendelian conditions. It has been shown that there
is a strong correlation between the overall number of variants
found per individual and African ancestry4–7. Furthermore,
significant differences exist between populations in the number of
variants per individual considered disease causing by the two
popular clinical databases, Human Gene Mutation Database
(HGMD) and ClinVar6. On the basis of annotations from
HGMD, individuals with predominantly African ancestry have by
far the most variants considered disease causing, whereas variants
prioritized as disease causing based on annotations from ClinVar
are most abundant in individuals with predominantly European
ancestry and are of intermediate to below-average abundance in
predominantly African-ancestry individuals6. These population-
based discrepancies reflect differences between databases, and
suggest that the interplay between database and sample ancestry
is important. The CAAPA cohort utilized here serves as an
appropriate sample, with representative quantities of variation
(that is, similar-sized haystacks), for evaluating whether biases
exist when applying precision genomic medicine to African-
ancestry individuals. Any biases and/or population specificities
for African-ancestry patients that inflate the number of
prioritized variants (that is, make the haystack bigger), would
result in increased effort (that is, time and money) to identify a
causative variant (that is, find the needle) in African-ancestry
patients.

Results
Variant classification. We initially classified variants into two
main groups, with pathogenic annotated variants (PAVs)
comprising those identified as disease-causing in the Online
Mendelian Inheritance in Man (OMIM)8, HGMD9 or ClinVar10

databases, and non-annotated variants (NAVs) consisting of those
not annotated as disease-causing in these databases. Unless
otherwise noted, we used a an allele frequency filter, and
excluded common variants with a minor allele frequency (MAF)
45% from our analyses (Methods). Each category was then
sub-classified as deleterious or non-deleterious based on
computational predictions (Fig. 1a)11–20, which we consider as a

type of filter based on deleteriousness and note when used for
categorization. Since there is evidence for all PAVs (deleterious and
non-deleterious) and deleterious NAVs to be further evaluated as
higher priority, variants in these categories often require time-
consuming and costly follow-up review by a clinical team1,21,22 to
identify causative variants with a low false-negative rate.

Correlations with African ancestry and variant counts. We find
significant correlations between estimated African ancestry
(Supplementary Fig. 1) and the number of variants per individual
in all variant sets except deleterious PAVs (Fig. 1b–d). Both
deleterious and non-deleterious NAVs show similar levels of
correlation with African ancestry as does all genomic variation
pooled together7. When we remove the aforementioned MAF and
deleteriousness filters, as well as a filter on stop/splice sites, and
identify PAVs from either HGMD or ClinVar databases
separately, we find a strong positive correlation between
estimated African ancestry and variants identified in HGMD
(r¼ 0.992, P¼ 6.12� 10� 14) and a modest positive correlation
between African ancestry and variants in ClinVar (r¼ 0.539,
P¼ 0.031). The correlation becomes less positive or even negative
(Supplementary Table 1) as we re-add our two main filters: (1)
inclusion of variants with MAF o5% (MAF filter); and (2)
inclusion of variants called deleterious by at least 2 of 11 in silico
predictions (deleterious filter).

One possible explanation for this general reduction of the
positive correlation with ancestry is that these filters effectively
remove functionally neutral variants, of which there are more in
persons of African ancestry. Assuming this, one would predict a
reduction in the positive correlation with African ancestry, as
long as the filters remove a higher number of functionally neutral
variants, relative to causative variants, from African populations
compared with European populations. Given recent studies
showing that African populations have more genetic variation
than European populations5,23,24, but that the number of
deleterious alleles in an individual is independent of
demography or lower in Africans, depending on the level of
deleteriousness of these alleles25–29, one would expect all filters to
remove higher numbers of non-causal variants from individuals
with greater African ancestry, as is consistent with what we report
here. Specifically, as we apply the MAF filter and exclude all
common variants, we are eliminating variants that have been
misidentified in databases as disease causing22, of which there are
more among individuals of African ancestry. Similarly, as we use
in silico predictors to filter out putatively non-deleterious
variants, we remove more functionally neutral variants from
Africans than from Europeans. For instance, the number of non-
deleterious PAVs per individual increases with African ancestry,
whereas the number of deleterious PAVs per individual does
not. Furthermore, because the number of deleterious mutations
in African individuals is not greater than in European indi-
viduals25–28, these filters do not remove more deleterious variants
from Africans. This disproportionate removal of functionally
neutral variants will more effectively reduce the number of
incorrectly characterized variants in each class in African-
ancestry individuals, and explains the reduction of the positive
correlation with African ancestry as filters are applied.

Deleterious predictors are different depending on annotation.
While filtering significantly reduces the correlation between the
number of deleterious PAVs and African ancestry, it does not
impact the correlation between the number of deleterious NAVs
and African ancestry. One possible explanation is that the effects
of the filters differ between the two categories of variants, with
functionally neutral variation filtered out more efficiently for
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PAVs. Because we require at least 2 of 11 predictors to call a
variant putatively deleterious, it is possible that predictors calling
PAVs deleterious are consistently different than those calling
NAVs deleterious. This is what we observe (Pp¼ 10� 15, w2-test
of independence), with predictors that use clinical databases to
train their algorithms being over represented in deleterious PAV
calls, and algorithms that are agnostic to clinical databases
making up a larger percentage of the deleterious NAV calls
(Supplementary Table 5). One possibility is that the machine
learning-based algorithms preferentially optimize for patterns
within the PAVs, and can thus inherit an ancestry-specific bias.
Supporting this is the notion that most new African-specific
causal variants will initially be identified as NAVs and may thus
be less likely to be called by the currently trained predictors.
Alternatively, though not mutually exclusively, conservation
algorithms may be better able to remove background variants
from the NAVs if the conservation score range for NAVs is
significantly larger than PAVs. Given that NAVs are not

annotated and are less processed than PAVs, they are more likely
to be sampled equally across the entire distribution of con-
servation scores, and to therefore represent a wider range of
conservation scores than PAVs. This is consistent with what
others have observed2, and might explain why conservation
algorithms predominate in the separation of deleterious NAVs
from non-deleterious NAVs, compared with PAVs. While this
differences in the type of predictors used in distinguishing
deleterious and non-deleterious variants of different classification
may represent the potential extension of ancestry related biases to
deleterious predictors, this needs to be studied in more detail.

ClinVar correlation with African ancestry over time. To explore
the historical context of recognized PAVs, and evaluate how
ancestry related biases may have impacted the reproducibility of
previous clinical applications relying on ClinVar, we conducted
an analysis of how biases in archived versions of ClinVar have
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Figure 1 | Variant classification workflow and correlation with African ancestry. (a) The pipeline used to categorize variation into four groups

(deleterious (Del.) PAVs, non-deleterious (Non-del.) PAVs, deleterious NAVs and non-deleterious NAVs) each with different levels of clinical relevance (see

Methods for further explanation). The three key filters used in separating variants are (1) MAF from multiple databases, (2) pathogenic annotation (as

defined by the ClinVar and/or HGMD) and (3) deleterious prediction. For b–e the x axis is the proportion of African ancestry as estimated by ADMIXTURE.

The corresponding y axes represent the total number of variants per individual for the following groups: (b) deleterious PAVs, (c) non-deleterious PAVs,

(d) deleterious NAVs and (e) non-deleterious NAVs. Colours of each individual reflect the population sampling location.
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changed over time. ClinVar, a developing database of pathogenic
variation officially released in April 2013, was chosen for this
analysis as it has monthly updates that allow us to easily track
changes over time. As of March 2015, the number of known
pathogenic variants has almost doubled from 14,697 to 26,409.
In Fig. 2, we show the correlation over time between African-
ancestry proportion in our CAAPA individuals and counts of
ClinVar-based pathogenic variants in these same individuals for
each update between 16 June 2012 (pre-official release) and
5 March 2015. As seen from this figure, the content of the
database is highly susceptible to ancestry-related biases, which
affects the interpretation of results. Furthermore, these biases can
change over time, further complicating the ability to interpret
results and account for ancestry-related biases. The largest change
happens over a single month, from March to April of 2014, when
a significant positive correlation (r¼ 0.733, P¼ 0.001) switches to
a significant negative correlation (r¼ � 0.683, P¼ 0.004). An
analysis of differences between the March and April 2014 releases
identifies 68 single-nucleotide polymorphisms (SNPs) that
drive this marked change, and more details are presented
in the supplement (Supplementary Note 1 and Supplementary
Table 3).

The red line near the bottom of Fig. 2 shows the same
correlation over time after filtering the data, again by MAF,
mutation type and deleterious predictions (Fig. 1a). Similar to the
unfiltered data, the filtered data show the first major shift in
correlation from March to April of 2014, but the shift is in the
opposite direction, with April showing a significantly less negative
correlation (stats test) compared with March. The filtered data
continue to show a less negative correlation for 3 months, before
the pattern returns to a more significant negative correlation in
July 2014, which is again similar in trend to but opposite in
direction from the pattern seen in the unfiltered analysis. These
simultaneous similarities and differences in the shift of the
correlation between ancestry and pathogenic variation across
database releases and filtering procedures reflect the precarious-
ness of the current clinical databases, particularly when prioritiz-
ing variants of individuals with significant non-predominantly
European ancestry. In contacting ClinVar about any possible
curation differences for the March to July 2014 releases, we
learned that ClinVar received a large deposit in April 2014 from
the Breast Cancer Information Core database30 with significant
amounts of non-European data. While further information about
this deposit is unavailable and exactly why it caused a marked
change from positive to negative correlation is currently unclear,
these observations further support our message that database
content reflects ancestry-related biases and can impact overall
reproducibility.

Analysis of ancestral biases at the gene level. To explore
ancestral biases at a gene level, we evaluated the correlation
between the number of PAVs per gene and African ancestry using
the March 2015 release of ClinVar. After correcting for multiple
testing, we found a significant negative correlation with African
ancestry for 10 genes (Supplementary Table 2). These genes
represent a subset with the strongest bias, and while we suspect
this negative correlation with African ancestry is likely due to
some type of technical or ascertainment bias, it is nevertheless
possible that this bias could have some biological basis. These
genes will require particular care in clinical analysis and represent
an interesting set for follow-up investigation, as African causal
variants in these genes are more likely to be labelled as NAVs and
require a greater identification effort. We find, in general, that the
subset of genes with significant positive or negative correlations
(Po0.05, uncorrected) are not enriched for those genes

associated with known Mendelian diseases or those found in the
GWAS catalogue31 (Methods).

Discussion
The ability to accurately report whether a genetic variant is
responsible for a given disease or phenotypic trait depends in part
on the confidence in labelling a variant as pathogenic. Such
determination can often be more difficult in persons of
predominantly non-European ancestry, as there is less known
about the pathogenicity of variants that are absent from or less
frequent in European populations. A key part of this are the
differences between pathogenic variants, deleterious variants and
prioritized variants, which are merely members of the proverbial
haystack with differing levels of evidence for potential disease
causality. It is important to note that a deleterious variant will
only be labelled as pathogenic if its effect size is large enough to
directly cause disease and this effect has been seen and annotated,
and that a pathogenic variant will only be deleterious if it
negatively impacts reproductive fitness. These terms are not the
same, nor synonyms of true causality, but the use of deleterious-
ness as evidence for true disease causality is predicated on the fact
that deleteriousness and pathogenicity should be correlated.
While we cannot be sure which of these variants are truly disease-
causing (actual ‘needles’ rather than haystack members) without
additional functional or association-based evidence, we believe
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Figure 2 | Historical view of African-ancestry biases in ClinVar. The x axis

represents the various archived versions of ClinVar. In the black y axis on

the right, we see the number of PAVs recorded from each version of the

database. There are a few decreases in numbers, but overall this number

shows continuous growth. In the blue y axis on the left, we see the

correlation coefficient estimated between the number of PAVs per CAAPA

individual and their proportion of African ancestry. The dotted grey line

represents the date of the first official release of ClinVar. The blue trend line

shows the instability across different ClinVar releases of the correlation of

African-ancestry proportion with average number of pathogenic variants

per individual. The change in correlation is particularly notable for

sequential releases between March and April 2014, after which the

correlation remains significantly negative for 3 months (April–July 2014)

before once again becoming significantly positive. The red trend line

represents the same relationship between ancestry–pathogenicity

correlation and ClinVar release over time after applying filters, and shows a

significant change in correlation during the same 3-month period of

April–July 2014 despite an overall reduction in movement of the correlation

across time.
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that discrepancies between true pathogenicity and annotated
pathogenicity are a major source of the biases we report. A likely
contributor to this incongruity is that databases are missing
population-specific pathogenicity information, and with regard to
the results we report here, African-specific pathogenicity data.
Therefore, true causal variants for predominantly non-European
patients are likely to fall into the NAV categories. Since NAVs
have the highest degree of positive correlation with African
ancestry (that is, bias), causal variants falling into this group are
more difficult to distinguish, as they exist amongst a larger
number of high-priority background variants (that is, larger
haystack). This problem is compounded in individuals of
substantial African ancestry, as their larger amount of overall
genetic variation5,23,24 results in an even greater number of
deleterious NAVs requiring adjudication.

As a consequence, review of genomic test results for persons of
predominantly non-European ancestry could be both more
challenging and costly. Positive correlations of African-ancestry
proportion with non-deleterious PAVs and deleterious NAVs
result in more variants to evaluate for African-ancestry
individuals (that is, larger haystack), which leads to higher costs
and longer turnaround times. Assuming a cost of $500 per variant
for Sanger confirmation in a CLIA-certified laboratory
(see Supplementary Table 6 for the range of costs found in
clinical laboratories), and given gene candidate prioritization
approaches that use phenotype to gene mapping32 and limit
variants receiving follow-up confirmation to those in about 1% of
the genome (that is, about 200 genes), we estimate an African-
ancestry patient would have about 4.5 prioritized variants needing
validation compared with 2.8 in an individual of European
ancestry. This translates to a 1.6-fold increase in the number of
variants prioritized, and represents a confirmation cost difference
of over $800 per patient. Notably, these estimates are simplified
and conservative, as we do not consider the substantial cost of
having each of these variants reviewed by a clinician.

A potential solution would be to reserve follow-up confirma-
tion for deleterious PAVs, which are uncorrelated to African
ancestry and should therefore not be more common in
individuals of African ancestry. However, doing this would limit
the diagnostic landscape for both Europeans and non-Europeans
to only previously found variation, and would greatly undermine
the promise that sequencing technology holds for clinical
genomics. Furthermore, this would limit the field to Euro-centric
databases that would frequently miss causal variants in minority
populations. In these situations, the missed causal variants would
only be represented among the NAVs, which underlines the
importance of not excluding prioritized NAVs from follow-up
analysis.

These limitations translate into serious challenges, and despite
the increased costs, provide good reason to cast a wider net for
variant prioritization and confirmation when applying genomic
testing to patients of African ancestry, and likely other
predominantly non-European ancestries. As long as ancestry-
related biases are not addressed, and most studies continue to
predominantly sample from European populations, the genetics
community will face challenges with implementation, interpreta-
tion and cost-effectiveness when treating minority populations.

Methods
Filtering pipeline. We annotate all variation using ANNOVAR33, a programme
that facilitates the comprehensive and integrative annotation of multiple data types
for each variant. Variants are divided into two main classes, each with two
subgroups, for a total of four categories. PAVs consist of variants annotated as
pathogenic in clinically annotated genetic databases, and are subdivided into
deleterious and non-deleterious subgroups as determined by in silico predictions.
NAVs include all variants not annotated as pathogenic (labelled as disease
mutations), as well as those entirely absent from clinically annotated databases, and

are also subdivided into deleterious and non-deleterious subgroups. Using
customized ANNOVAR index tables, we annotate variants with 11 in silico
predictors of function11–20 (Supplementary Table 4), functional information about
protein-coding effect, clinical variation knowledge from ClinVar10 (all archived
versions from 2012 to March 2015), the professional version of HGMD9

(fourth quarter version of 2014) and allele frequencies from multiple population
sequencing projects, including the 1000 Genomes Project (phase 3)23, the ExAC
database (http://exac.broadinstitute.org) and the Exome Sequencing Project5. We
also integrate the final output as a list of variants belonging to each of the variant
classes described above (Fig. 1a)1.

Filtering criteria. For variants from the OMIM8, HGMD9 and ClinVar10

databases, only those found in protein-coding genes are included. We also remove
variants with MAF 45% in any of the 1000 Genome super-populations, ExAC
populations or Exome Sequencing Project populations. With regard to the analysis
portrayed in Fig. 1, if a variant is not found in any of the clinical databases, we use
an allele frequency cutoff of 2% (Fig. 1a) and include only protein-altering variants
found in the three following gene annotation databases: ENSEMBL GENE;
KnownGene; or RefSeq. We also filter variants on the basis of in silico prediction,
and require that at least 2 of 11 in silico prediction methods identify variants as
deleterious (see Supplementary Table 4 for individual predictor cutoffs). An
exception to this is that nonsense and splice site variants are called deleterious
irrespective of their in silico predictors. Situations where these predicted
deleteriousness filters are not applied are identified as exceptions in the text.

Variant classes. The first variant class, deleterious PAVs, are defined as variants
with exact matches in genes in the OMIM8, HGMD9 or ClinVar10 databases, and
are known to be associated with disease phenotypes. In addition, this class has to
meet the above in silico prediction filter. The second class of variants is non-
deleterious PAVs, and they only differs from the first category in that the
requirement of being deleterious is removed. Deleterious NAVs make up the third
class. This class is not annotated as pathogenic in any of the clinical databases, but
these variants are identified by at least two in silico predictors as being deleterious.
Finally, variants neither previously annotated as pathogenic nor predicted to be
deleterious by at least two in silico predictors are classified as non-deleterious
NAVs; they are seen as the least likely to be causative for a known disorder. Non-
deleterious NAVs are also filtered by the frequency filters described above. Overall,
o1% of NAVs are found in databases but not annotated as disease-causing; the
remaining NAVs are not identified in any database.

Whole-genome sequencing data from the CAAPA Project. CAAPA consists of
high coverage (B30� ) whole-genome sequence data (N¼ 642) and provides a
catalogue of genetic diversity from multiple populations of African descent.
These populations include individuals from North America, South America, the
Caribbean and continental Africa7, and study individuals are categorized as being
cases and controls for asthma (sampling and variant calling are presented in more
detail in Mathias et al.7) However, we do not suspect an atypical number of
clinically relevant pathogenic variants among cases with such a complex disease
phenotype as asthma. We have sampled 16 populations, including 8 different
African American populations. Assembly of individual genomes, as well as variant
calls are done using the Consensus Assessment of Sequence and Variation
(CASAVA) package34. Using probabilistic models to build probability distributions
over all diploid genotypes at every genomic site, genotypes are called after
numerous quality control filtering steps. For each genomic position, a set of
candidate SNPs becomes output. Multi-sample VCFs are generated at Knome Inc.
(Cambridge, MA, USA), using VCFtools v0.1.11 (ref. 35) and custom scripts for
additional data processing. While everything we report is based on a genome
sequencing data set containing 642 samples, when we repeated our analyses on an
expanded set of samples (total N¼B950) containing additional currently
unpublished CAAPA data, our results were unchanged.

Estimation of ancestry proportions. To estimate ancestry we combine the
CAAPA data with phase 1 of the 1000 Genomes Project, and data from previously
published studies, which genotyped Hispanic and Native American samples on an
Affymetric 6.0 chip36,37. All A–T and G–C SNPs are removed, and a missingness
filter of 5% and a MAF filter of o5% are applied. The resulting SNPs are then LD
pruned with plink38 using windows of 50 SNPs and removing SNPs with an
r240.25, then iterating by 5 SNPs (that is, plink command—indep-pairwise 50 5
0.25). This results in 167,987 SNPs for admixture analysis.

We estimate ancestry proportions using the software package ADMIXTURE39.
After performing 30 replicates modelling four clusters, we select the parameter
values with the highest negative log likelihood. We identify the cluster that
represents African ancestry by using the African groups from the 1000 Genomes
Project as a reference (that is, the cluster where they have499% membership), and
we extract the proportion estimates for each of our CAAPA samples from this
cluster. These become the values used to estimate the correlations. We present
them as a bar plot in Supplementary Fig. 1.
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Statistics to accommodate sampling structure. Owing to our population
sampling approach, the full cohort does not represent an unstructured selection of
individuals of African ancestry. To account for this when performing correlation
analysis, we use the approach implemented in the R package ‘psych’40. The
approach estimates correlations within each single population, which represent the
pillars of the population substructure, and then combines these estimates weighted
by sample size. Reported correlation coefficients and the P values are from the
‘weights’41 package, and significance is reported with a false discovery rate
approach to correct for multiple testing.

Data availability. The whole-genome sequence data referenced in this study were
generated by the CAAPA7 and have been deposited in dbGAP with the accession
code phs001123.v1.p1.
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